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A Theoretical Model for Average River Runoff

Iberall, A. S., Scholar, UCLA, Oral Biology, Los Angeles,
CA 90024-1668, USA

Based on a physical theory for the hydrological cycle,
for the time averaged steady state in which the precipi-
tation equals evaporation (commonly called evapotran-
spiration) plus runoff, and the assumption that an in-
trinsic coordinate map of a large land mass can be set up
as a projection on the Earth’s geoid of altitude contours
vs. a trace of the position of rivers, such a map can be
used to predict or estimate the average runoff in rivers if
the ground permeability is known or can be estimated. A
mathematical theory for estimating that runoff from
topographic maps is derived.

Introduction

The purpose of this paper is do develop a simple
mathematical model of ground flow so as to permit
computing the long term steady state flow in rivers as the
runoff component of the hydrological cycle. A fluid
mechanical result is derived that is more exact than the
Dupuit-Forchheimer theory of ground flow (1, 2), flow
in a nearly flat field, but not as exact as the Muskat
theory (3), which — by more exact integration of the
Darcy equations of ground flow in terms of elliptic inte-
grals — permits near infinite vertical “waterfall” flows, as
required, for example, in seepage through dams. Those
familiar with engineering results in elasticity will recogn-
ize that the solutions of the ground flow equations being
proposed are equivalent to elementary elastic beam
theory or plate theory in which stretching in the plane of
the plate is allowed, as opposed to the bending of rods.

A hydrological model of a large land mass may be
regarded as a two dimensional map of the land mass that
has associated with it, at every point, exactly or in
approximation, as many variables as are needed to cha-
racterize the total course of water on that land mass, and
some laws or rules that connect these variables, point to
point dynamically. The “independent” input to that

model is the rainfall which has to be given by a model of
the meteorological cycle.

Given slowly variable tectonic and plate erosion
conditions, it can be assumed that large land mass sur-
faces present a sequence of dynamic topographic states
that may be viewed as ergodic. That is, such an ensemb-
le of states is equivalent to a large sequence of sand
piles, each of which have been eroded by water from a
distributed network of shower heads. The water streams
create an ensemble of networks of rivers, one such
pattern on each pile. While each network has an inde-
pendent history, their statistics are comparable. It is to
any one of these slowly changing geological states that a
theory of runoff is to be applied.

Using the Earth’s sea level geoid as a zero reference,
each point on the large land mass can be indexed by
planar, e.g., local Cartesian x, y or latitude-longitude sea
level coordinates. To each such coordinate, a z coor-
dinate, the height above sea level, can be indexed,
thereby transforming the planar grid into an intrinsic
ordinate topographic mapping of altitude coordinates
associated with that planar x, y surface (a standard topo-
graphic map). Alternatively, a mapping orthogonal to
those contours provide a map of “lines of steepest
descent”. '

The nominal paths of the existing runoff system are
along lines of steepest descent, according to the ele-
mentary law that water runs downhill in a gravitational
field. But, because of the process by which rivers are
formed, i.e., by land erosion and transport of a bed
load, the paths of rivers meander among lines of stee-
pest descent. The ongoing process of erosion and con-
tinental uplift continues to explore the ensemble of
ergodic states that these river networks can occupy in
long term.

Thus an intrinsic surface coordinate system for a
continental land mass consists of the altitude contours
and the not quite orthogonal paths of the river runoff
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Fig 1

Major river basins and a river ordinate system for the
United States (source [4, 5]).

system. However, these systems are isolated in inde-
pendent river basins, since the rivers do not cross ridges.
Such a nominal coordinate system is illustrated for the
United States in three figures — as isolated river basins
and river ordinates (Fig 1), as altitude contours (Fig 2),
and as the composite intrinsic coordinate system formed
by the river net and altitude contours (Fig 3) — source
4, 5).

It is stressed that such an intrinsic map is not fixed,
but — instead — it is the memory-laden resultant of
yesteryear’s events, both geological, e.g., tectonic, and
meteorological, e.g., long term changing patterns of
rainfall. Both these processes continue to modify the two
coordinate systems. But, insofar as the variation is slow
and typical of the class of all such mappings, then the
map properties can be described by a near steady state
characterization.

The steady state or nearly time-independent hydro-
logical cycle field flow equation on such a land surface is

average
evaporation

precipitation = average runoff + average

This result is derived from the dynamic equation:

transient rate of change of ground water = short time
averaged precipitation — runoff — evaporation

If this dynamic equation is integrated over a few
years, assuming no geological changes and very little
change in the water table, then the previous equation
represents the time averaged steady state result. The
equations stated here differ only from more standard
sources in referring to an evaporation component rather
than an evapotranspiration component. Our studies have
indicated that, for long term-large area representations,
the transpiration of plants represent negligible increment
or decrement to the diffusive component of water sur-
face evaporation (6, 7, 8). This point was argued out in
great detail in (6). The essence of the argument is that

Fig 2 Major altitude contours in 1,000 feet intervals for the

United States with a background of the river basins (source

{4, 5)).

the Bowen ratio for cloud covered regions rather quickly
reaches a near constant value. That value represents the
psychrometric constant of a wetted thermometer bulb,
which the Earth thus resembles. Whether these results
are accepted or not, the reader is free to translate the
term evaporation to evapotranspiration without affecting
the results in this paper which depends on other issues.

What is at issue in this paper is the question of cau-
sality. For example, referring to the mean state equation
statement of the hydrological cycle, there are three
terms. Independent causality can only be asserted for
two of these terms. The question is thus which variable is
not independent. This paper is based on the thesis that
mean precipitation is an independent meteorological
variable, and river runoff is an independent hydrological
variable. Therefore, in this modeling, the evaporation is
a mixed resultant of these two processes.

We have argued that the average river runoff is a
characteristic associated with the existing river network,
wherein that network is an indicator of the position of
the water table at its breakout at river levels and the
ground permeability to water flow. Thus the steady
state, nearly time independent input to the drainage
system is the average precipitation and the resultant
“output” from the earth system is the evaporation.

As an illustrative approximation, without addressing
causality, that balance can be approximatety exhibited as
follows: Fig 4 illustrates the precipitation input to the
United States as average inches of rainfall per year
(source (9)). As estimated from that coarse grid, in
which basically only 10 inch annual rainfall contours are
shown, the mean rainfall in space and time is about 29.4
inches per year. The surface runoff at the boundary can
be approximated by summing the flows from the prin-
ciple river gaging stations for all the border states in
contiguous continental United States. Using (5) as a
source, the total runoff is estimated to be 1,835 thousand
cu.ft./sec. Since there are 1.885 thousand million acres of
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Fig 3

Intrinsic surface coordinate system net for the United
States formed by river and altitude ordinates.

land surface in contiguous United States, the net surface
runoff is estimated to be about 8.5 inches of water. Thus
the first approximate balance would provide an estimate
of 29.4--8.5, equal to 20.9 inches of water evaporated
per year.

A more detailed point by point estimate of evapora-
tion (or evapotranspiration, as they call it) can be made
from data prepared by the US Dept. of Agriculture (10).
From their coarse-gridded mapping of evapotranspira-
tion, an estimate of 19.1 inches of water per year was
obtained. While an uncertainty of 2 inches of water can
hardly be be regarded as precise, it suggests that the
major details of the hydrological balance has been acc-
ounted for in an approximate overall fashion. Also we
have shown, by a global theory for meteorological heat
transfer, that the Earth’s evaporation for cloud covered
regions (e.g., those with more than 20 inches of rainfall
per year) can be estimated to be about 23 inches of
water per year (6, 7, 8), which is not incompatible with
our more local balance for the United States.

I now propose to show a hydrological model of
ground flow which permits one to estimate river runoff
solely from such an intrinsic coordinate system of a large
land mass like Fig 3. Its logic was outlined in (6, 7, 8)
and is here summarized.

It is assumed that a river does not run along lines of
steepest descent, but meanders among such lines. It is
also assumed that large river systems are associated with
river basins, which are defined by the ridge contours that
separate adjacent basins. If a river meanders in its basin,
then the basin can be divided into a series of narrow
herringbone-like strips, which begin at nearby points on
the centerline of the river within the basin and which
follow lines of steepest ascent to the ridge contour. If it
is assumed that surface water percolates into the ground
in short space-time to join the water table, this as a time
averaged process, which then also descends to follow the
lines of steepest descent, then the flow drainage into the
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Fig 4

Mean annual precipitation in inches per year for the
United States (source [9]).

river from a slab whose surface strip is bounded by a
segment of ridge contour, two lines of steepest descent,
and an intersected segment of meandering river defines
the increase in flow between the two intersected river
stations. The drainage from that slab represents the
average precipitation minus the evaporation for that
strip of surface area. That is, the average increase in
runoff in the marked segment of river is the net rainfall
that percolated into the ground over that drainage strip
associated with that river segment. The main theoretical
idea is that the water table, representing the net run off
flow between precipitation and evaporation, breaks out
— by definition — at the river. Greater or lesser flows
would break out above or below the river line.

A Mathematical Model of How Flow Percolating into
the Ground Makes Up River Runoff

Geometry of the model. Start from a cross-sectional
cut through a river valley, made in a vertical plane of
any of the lines of steepest descent, extended at its
flanks up to the ridges of the river valley. We will be
concerned with a decomposition of the valley area into
valley sections that are nominally of unit width, which
will therefore be defined by a near parallel cross-secti-
onal cut through another neighboring line of steepest
descent. Two such vertical planes intersect two stations
along the river in that valley. We wish to determine what
net average rainfall (precipitation less evaporation) on
that strip works its way into the river to increase the flow
in that unit width section. By such a formulation, we
have restricted ourselves to a two dimensional problem,
involving x, the horizontal ordinate which measures the
projected ‘length’ of the centerline of that small region
which drains into the river segment (the projection of a
line of steepest descent on the geoid plane), and z repre-
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[11, 12]).

sents the vertical ordinate along that small region of
steepest descent. This x—z plane defines the plane of
presentation for any characteristic unit ground flow
problem. Actually, of course, the tortuousity of the
terrain, which technically is the mathematical torsion
measure, does not make the x—y projection of the line
of steepest descent that cuts both the river and the ridge
a straight line. That is, the coordinate system is not
Cartesian. However, it is Cartesian in the limit, so that it
requires the choice of the width unit to be small. It is by
imagining the mean center of the the two adjacent lines
of steepest descent laid out smoothly, so that x is really a
measure of the more tortured line of steepest descent,
that we have thereby isolated our two dimensional
problem.

A hydological justification of the model. To permit
the reader to assess the potential validity of these ass-
umptions, five figures are used to illustrate a particular
regional problem. The region considered had been
chosen essentially at random.

In Fig 5, a river net is shown for an arbitrarily select-
ed region in the United States, chosen at a particular
scale of 1 to 2,000,000 (source (11)). The river stations
identified on the map are taken from (12). The unprim-
ed stations are in Oklahoma, the primed ones in Texas.
In Fig 6, the river net and an altitude contour net are
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shown simultaneously (source of altitude data (11)). In
Fig 7, the drainage basins for each of the major rivers is
estimated. This was accomplished by smoothing altitude
contours free of detail, constructing lines of steepest
descent coordinates orthogonal to the altitude contours,
paying no attention to the rivers. This thus separated the
drainage basins between the rivers. To check the validity
of our solution contours, we used a finer scale map of
drainage basins (source (13)). The disparity in the estim-
ated basin regions was small (see (6)). In Fig 8, the
drainage areas associated with the various stations are
shown. In Fig 9, the further decomposition of these
drainage areas into ‘infinitesimal’ unit segments is
shown. That decomposition shows that the drainage
basins for river networks do not generally exhibit inor-
dinately extreme tortuousities. Thus their developable
Cartesian projection appears quite reasonable.

Mathematical formulation. In the mathematical for-
mulation of the ground flow for such two dimensional
slabs, we shall only solve for the drainage from one side
of the river valley; in x—z coordinates, the river is re-
presented as lying within a notched ditch or channel at
the bottom of the river valley, of water height h,. We
assume that the average free surface of the ground water
table, its return flow, breaks out at the river.
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Fig 6 An intrinsic coordinate system — the river and altitude contour net (source [11]).

The ground over the entire strip of river valley, per-
pendicular to the plane of presentation, is charged by a
net average intensity of rainfall w,. For the sake of
model simplicity, the net intensity is assumed constant
over the entire strip of the river valley. That net rainfall,
seeping into the ground, joins the water table at the free
surface with a nominal boundary condition of hydrostatic
pressure p = 0. That water table then drains, via ground
flow, towards the river.

Another boundary condition for that drainage is that
only the rainfall associated with that river valley seg-
ment drains to the river. Thus we can express the boun-
dary condition by regarding there to be a horizontally
impervious barrier perpendicular to the crest of the river
valley. With these boundary conditions, we can set up
and solve for the seepage flow field in the porous
ground.

We will measure height z above a plane tangent to
the bottom of the river section. We will measure dist-
ance x to the right from the rightmost bank of the river.
The horizontal distance to the ridge crest will be mea-
sured by x = L. Hydrostatic pressure in the seepage
field will be measured by p which is a steady state func-
tion of x and z.

The equations of motion in the seepage field are (6):

u = — kop/ox 1]
w = —k(pg+op/oz) [2]
au/ox + owloz = 0 [3]
where u = horizontal velocity
w = vertical velocity
k = Darcy coefficient of permeability

(conductance)

The equation of continuity [3], which represents two
dimensional incompressible flow, implies that the press-
ure satisfies a Laplacian field

a2p/ox2 + 92p/oz2 = 0

[4]

The boundary conditions that we have to satisfy are
the following:
1. x=0, p=pg (hy—2)
On the left face of the slab, the pressure in the river
increases hydrostatically with head.
.z=0,w=0
For practical purposes, at the plane level of the bot-
tom of the river the vertical velocity is negligible in
the river valley.
.x=L,u=0
The river valley acts as if it is sealed off from an ad-
jacent valley by a vertical barrier below the crest.
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Fig 7 Estimated river basin drainage areas (estimated from Fig 5, 6; checked from source [13]).

4. p=0,z=hratx=0,h=h,;at x=1, h=h
The free surface, defined by p = 0, is measured by its
height z above the plane base.

5.z=h,w=—w,

The ground seepage is made up of the net vertical
rainfall w, which trickles into the free surface in the
ground.

The basic assumption behind these boundary con-
ditions is that the ground permeability is homogeneous
and isotropic, and that there are no submerged aquifers
bounded by water impervious strata which discharge into
the river.

The most convenient form for p that we have been
able to find is made up from

p = pg [he+F(x)+G(z) +z Hi(x) +22Hy(x)+- - -] [5]

where the various functions F, G, H; have to satisfy
Laplacian contraints. The form fits the large x, small z
seepage field. It is simple to show that the first boundary
condition is satisfied by

pP=pg {h0+F(x)— F(0)+2[H,(x)-H, (0)-1]-22F"/21-z3H /31— z4F4)/41 - - } [6]

where

(F”)x=o=(Hl”)x=o=(F””)x=o=(H1””)x=0: <=0 [7]

The second boundary condition is satisfied by

p=0rg [hy+F(x)-F(0)—z-22F"/2!+2%F " /41-z6F©)/61+ - - -] [8]
The third boundary condition is satisfied by

[F=22 F/21 4 24 FO)/4!-26 FO/61+ ---] y_ =0 [9]

As a minimal necessary condition (e.g., a first app-
roximation),

(dF/dx) 4y = 1,=0 [10]
can be assumed.

The fourth boundary condition is satisfied by

h+ h2F7/2!-h4F®)/4! + - - - = hy + F(x)-F(0) [11]
Various approximations, starting from

h=h, +F(x)-F(0) [12]
can be assumed.

The fifth boundary condition is satisfied by
wo/kpg=—hF"/1! + h3/FH/3! + - .. [13]
Various approximations, starting from
hd?F/dx? = -wy/kpg [14]

can be assumed.
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Fig 8 Drainage areas associated with river stations in Fig 5.

It seems clear that for a first approximation set, egs.
[10, 12, 14] are adequate. The parameter wy/kpg is
small. Adding a quadratic term to h (namely h?F”) only
makes a negligible correction of magnitude wy/kpg to
the form for h. The curvature in F” (=h”) is basically
small. Thus h? F# can be neglected compared to F”.

A first order, nearly flat approximation (hy; =h,) for
this equation set gives

This result, Eq. 20, represents a fairly exact state-
ment of the computation that defines runoff in rivers.
The relevant permeability-thickness product is khy
(where hy is the height of the water table above the river
bottom at the crest of of the river valley. The estimate of
incremental runoff can be made either from the initial
slope hy’, or from the total river valley elevation h; —h,,
as (h;—hy)/2L). Because the assumption can be made
that the water table and the general ground slope are

F (wo/kpg) (L/hy) [x/L—x%2L2] L [15] conformal, an assumption which is much better near the

h = hy+(wy/kpg (L/hy) [x/L-x%/2L2] L. [16] river than at the crests of the river valley, it would app-

(hi-hy)L = (wo/2kpg) (L/hy) [17] ear more precise to estimate the runoff from the initial

h,y = (wy/kpg)/(L/hy) [18] slope than from (h; —h,)/2L. However the difference is

from which we obtain the result often iny academic. Two notes on this point may be of
some 1nterest.

wo/kpg = (hy/L)hy If the contour lines of steepest descent are drawn on

= 2 (hy/L) (h;—h,)/L [19] the map of an actual mature river valley, following the

as a theory for the net average rainfall (i.e., the river
runoff) as measured by w,. The increment of increase of
river discharge AQ, between two stations that are a
distance Ay apart along the axis of the river valley,
where L Ay is the projected area of the catchment, is

AQ/Ay

Lw,
kpghy hy’
h; (kpg/2) (hy —ho)/L

[20]

river downstream, one finds the projection to be a herr-
ingbone pattern of near parabolic form (e.g., see Fig 9).
The ‘nose’ of that steepest descent line corresponds to
the active portion of the river valley in which the river
frequently floods and meanders. If that portion is
squared off, then we note that the catchment areas
basically consist of parallelograms that drain into the
flood area at a near constant angle (the asymptoptic
flanks of the parallelograms). The imaginary x—z plane
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Fig 9 lustrative detailed decomposition of drainage areas into small segments.

of presentation used to portray the flow field is thus
drawn parallel to the sides of that parallelogram rather
than drawn perpendicular to the axis of the river valley.
There really is very little difference in how the flanks of
the parabola are used to estimate the slope of
differential height of the drainage basin. The uncertainty
can be reduced to appreciably less than the factor of two
that appears in the two different forms of computation of
slope.

As a second note, the nature of the erosion that cre-
ated the system of river valleys suggests that the form of
a mature river valley of extended size approximates the
shape that the water table would have in this theory of
ground flow. Namely, as we stated, the ground flow is
conformal with the water table. This would be born out
by the observation that even though we represented a
river valley with a single ‘central’ channel, this valley
included extensive stream systems in which local steam
valleys exist at many scales on the flanks. We can
summarize this property by two statements: One that
yesteryears rains, as average runoffs, wear the lands
down conformally to its current shape including the
current rivers they mark on the flanks of existing valleys.

The model prototype for that conformality is the
process of shaping hard surfaces by lapping abrasion,
e.g., by the eroded river bed load, such as that used in

forming optical mirrors. The speed of such abrasion, in
geological time, is routinely observed almost daily by
visitors in the wear of the Niagara Falls by the Niagara
River. Even when plate movements are sufficient to
create waterfalls, for example in rift valleys, the wearing
process works to make the surface somewhat conformal
to the water table. That is, mature landscapes exhibit
broad gentle river valleys created by the actions of the
surface, the underground, and the bed load erosion.
For our model result, we need a little more security
than the flat approximation (hy/h,~1). Returning to the
equation set and the next approximation, the constraint
equations can be written, in terms only of h, as

h d2h/dx2= — w/kpg
(dh/dx)5-1.=0

(21]
[22]

from Egs. [9—14]. The solution to this pair of equations
is

dh/dx=hy’ { (In hy/h)/(In hy/hg) } 12 [23]
hy' = { 2wy/kpg] [In hy/h,} 12 [24]
The substitution

In h=In h;— 22 [25]

reduces the solution of the differential equation to the
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area under a Gaussian normal error curve. Thus
N(t,)~N(t)=(1/2 V m)[hy’/(In hy/h,)12] [L/hy] [x/L] [26]
t=[2 In (hy/h)]V2, t, = [21n (hy/h,] 12 [27]

where N(t) is the area under the Gaussian normal error
curve { N(0) = 0, N () = 0.5 }, given by

t
N = —— (exp(—t22) at 28]
V2w °
Whereas in the flat approximation
wokpg = 2 (hy/L) [(h —ho)L] [29]
in the full approximation
wo/kpg = 2m (hy/L) [(hy —ho)/L] [30]
hl/ho m
1 1
1.1 0.987
1.5 0.939
2.718 0.882
0 0.785
where
m = (hy/ho)m/(h —ho) § N(to=[2 1n hy/ho]12) } 2 [31]

Considering the crudeness of the data available to model
the Earth, it is sufficient to use some approximate mea-
sure such as

wo/kpg=1.6 (hy/L) (hy —ho)/L [32]
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